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Abstract

We introduce a system of two component two-dimensional (2D) complex Ginzburg-Landau
equations with spin—orbit-coupling (SOC) describing a wide-aperture microcavity laser with saturable
gain and absorption. We report families of two-component self-trapped dissipative laser solitons in
this system. The SOC terms are represented by the second-order differential operators, which sets the
difference, |AS| = 2, between the vorticities of the two components. We have found stable solitons of
two types: vortex—antivortex (VAV) and semi-vortex (SV) bound states, featuring vorticities

(—1, +1)and (0, 2), respectively. In previous works, 2D localized states of these types were found
only in models including a trapping potential, while we are dealing with the self-trapping effect in the
latteraly unconfined (free-space) model. The SV states are stable in a narrow interval of values of the
gain coefficients. The stability interval is broader for VAV states, and it may be expanded by making
SOC stronger (although the system without SOC features a stability interval too). We have found three
branches of stationary solutions of both VAV and SV types, two unstable and one stable. The latter one
is an attractor, as the unstable states spontaneously transform into the stable one, while retaining
vorticities of their components. Unlike previously known 2D localized states, maintained by the
combination of the trapping potential and SOC, in the present system the VAV and SV complexes are
stable in the absence of diffusion. In contrast with the bright solitons in conservative models, chemical
potentials of the dissipative solitons reported here are positive.

1. Introduction

The spin-orbit coupling (SOC), which was originally predicted in the form of the Dresselhaus [1] and Rashba

2, 3] Hamiltonians, is a fundamentally important effect in physics of semiconductors [4-6]. More recently,
much interest was drawn to the possibility to emulate the SOC phenomenology, in its ‘clean’ form, in spinor
(two-component) atomic Bose~Einstein condensates (BECs), by creating settings whose Hamiltonians can be
mapped into the Dresselhaus and Rashba forms (or a combination of both) [7-9], see also reviews [10-12]. In
these contexts, adequate mean-field SOC models are provided by systems of nonlinear Gross—Pitaevskii
equations (GPEs) coupled by linear-mixing terms composed of first-order spatial derivatives.

Parallel to these developments, SOC effects were realized in the exciton-polariton fields populating
semiconductor microcavities operating in the strong-coupling regime [13-17], and in many other optical
systems [ 18]. Itis important to note that SOC in polaritonic microcavities can have two different physical
origins, viz., due to the underlying SOC between excitons, or between the photonic modes. Thus, the existence
of polaritons is not required to observe SOC, and therefore the microcavities operating in the regime of weak
coupling between light and matter, when polaritons are not formed, can be used to realize SOC effects. Belo L
make use of this and introduce a model for a planar microcavity that includes SOC, saturable I/U
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absorption [19-21]. This configuration is well known for its ability to maintain mode-locking of transverse
modes, leading to the formation of bright spatial solitons, as well as to provide interplay of transverse and
longitudinal modes leading to 3D effects, see, e.g. [20-25]. However, SOC effects have not been so far
purposefully studied in these settings. In microcavities, the SOC originates from the splitting of resonances of
the linearly (in-plane) polarized modes, whose dominant electric-field components are perpendicular (TE) and
parallel (TM) to the in-plane component of the carrier wave vector. Writing the field equations in terms of
circular polarizations produces the SOC terms with the second-order derivatives in equations (1) and (2), see
below, as was previously discussed in detail, see, e.g. [26]. Note that for transversely inhomogeneous states (in
particular, self-trapped solitons) the SOC terms are going to be important even for states with the zero in-plane
momentum.

A theoretical analysis of systems combining the cubic attractive interactions of the BEC wave functions and
linear spatial-derivative SOC in two-dimensions (2D) has revealed unexpected results. First, in the absence of a
trapping potential, SOC represented by the Rashba Hamiltonian produces two species of stable 2D solitons.
These are semi-vortices (SVs, alias half-vortices [27]) with one zero-vorticity component, and the other one
carrying vorticity § = =1, and mixed modes (MMs), so called because they mix zero-vorticity terms and ones
with § = £ 1inboth components [28-30]. These results are drastically different from the well-known ones
obtained for traditional GPE models in 2D, which produce Townes solitons with zero vorticity [31], and their
ring-shaped vorticity-carrying extensions [32-35]. The instability of the Townes solitons is driven by the critical
collapse in the 2D space with the cubicattraction [36, 37], while the vortex-ring solitons are subject to a still
stronger ring-splitting instability [38, 39]. The presence of the SOC terms changes the situation, as they bring a
coefficient which fixes alength scale in the system, which, in turn, breaks the scaling invariance that makes
norms of the Townes’ solitons degenerate (the entire family of these solitons has a single value of the norm). The
lifting of the norm degeneracy pushes it below the degenerate value, which determines the collapse-onset
threshold, hence the collapse cannot occur anymore. This mechanism secures the stabilization of both the SVs
and MMs, and lends them the role of the otherwise missing ground states [29, 30].

A difference introduced by the microcavity SOC terms is their second-order derivatives, giving rise to the
vorticity difference between two spin (circularly polarized) components to be |AS| = 2, rather than |AS| = las
in the above-mentioned models of atomic BEC. In particular, the analysis of the composite modes in the
exciton-polariton system, which includes a harmonic-oscillator trapping potential, was recently elaborated in
[40]. An essential result was the identification of stability regions for MMs and vortex—antivortex (VAV)
complexes, with vorticities S = =11in the two components (thus complying with the above-mentioned
constraint, AS = 2). An area of the MM-VAV bistability was identified too, and stable SVs were found when the
Zeeman splitting was added to the two-component system.

While trapping potentials are an important ingredient in various systems, see, e.g. [41, 42] in addition to the
above, it is also relevant to construct stable composite modes supported by SOC in laterally unbound settings. In
particular, laser systems with and without saturable absorbers [19-21, 25, 43] are known to support self-bound
vortex rings [25, 43]. A possible practical realization of the laser model considered below is a wide-aperture
semiconductor laser with a saturable absorber section similar to the ones used in [19-21], where the SOC effects
originate from the above mentioned TE-TM splitting of the cavity resonances. Theoretically, but without the
SOC effects, the model used below was elaborated in a series of papers by Rosanov and co-authors, see, e.g.
[44—46], and references there in. We generalize the Rosanov’s approach by including the SOC terms represented
by second derivatives mixing the two spin components. The system may also include effects of diffusion, but,
unlike the setting explored in [40] and in many other models [47—49], the presence of the diffusion is not
necessary for the stability of 2D states in the present case. Below, we identify two species of stable self-bound
vortex modes, viz., VAVsand SVs, both built of components obeying the constraint of AS = 2. In particular, the
VAV feature two mutually symmetric components with vorticities S = +1, while the amplitude of the SV’s
zero-vorticity component is much larger than the amplitude of its vortical counterpart.

[tis relevant to mention that VAVs are quite similar to two-component states, produced by systems of 2D
[50-52] and 3D [53] nonlinearily-coupled GPEs, with opposite vorticities, -5, and identical density profiles in
the co nts. [n the latter context, the bound states of this type were called ‘hidden-vorticity modes’, as, on
the fontkaty to their counterparts with equal vorticities in both components, the total angular momentum of the

mogdulation) interaction between two components (and no linear coupling between them) maintain bound
es similar to SVs, with zero and nonzero vorticities in the components [54, 55].
The subsequent presentation is organized as follows. The system of complex Ginzburg—Landau equations
\ (CGLEs) with the saturable gain, coupled by the SOC terms, is introduced in section 2. The same section also
reports some simple analytical results (necessary conditions for the existence of stable 2D dissipative solitons).
Numerical results, produced by the systematic investigation of the 2D system, are reported in section 3, for two
above-mentioned species of stable modes, viz., VAVsand MMs. The paper is concluded by section 4.
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2. The model and analytical estimates

In terms of scaled time rand coordinates (x, y), the system of CGLEs for wave functions . of the two spin
components, with the linear loss, whose coefficient is scaled to be 1, saturable gain and saturable absorption,
which are represented, respectively, by coefficients g > 0 anda > 0, and linear-mixing SOC with real
coefficient 3, is written as

D, = —(1 — i) (92 + Ay + ifee + B(D, — 10", )
0 = —(1 — in)(0; + DY + ifs + B(Ox + 18,4y, (2)
F=rsd 4 o - (3)

L+ e(usl + [Py 1+ (sl + [eP)

Here, the coefficient in front of the Laplacian, which represents the diffraction, is also scaled to be 1 (in this
notation, physically relevant values of the SOC coefficient, | 3], are definitely smaller than 1), and positives < 1
defines a relative saturation strength of the gain and absorption. The dispersive component of the linear loss
(diffusion) may be present, with coefficient ) > 0, but, in fact, the inclusion of this term, whose physical origin
may not be obvious, is not necessary for producing stable 2D modes, therefore we set7) = 0, reporting the
results below. The generic situation may be adequately represented by parameters

e=01, a=2, (4)

which implies weak saturation of the gain in comparison with absorption, while the gain and SOC strengths, g
and /3, will be varied as physically relevant parameters controlling modes generated by the system. Stationary
states with real chemical potential yrare sought as

Yy = e Muy(x, y), (5)
where complex stationary wave functions .. obey the following equations:
pus = —(1 = in)(8% + Aus + iF(x, Yuy + B(e — i8))u_, (6)
pu_ = —(1 — in(d; + ) u_ + iF(x, Y)Y + B(de + 10,)us, (7)
Fx,y)=-1+ g = (8)

1+ s(uc] + [u_]?) 1+ (P P
For the analysis of stability of stationary states, we define perturbed solutions as
Y, py 1) = e {us(x, y) + 8lva(x, y)eM + wix, y)e'}, ©)

where 6 is a real infinitesimal amplitude of the perturbations, A isa complex eigenvalue, and complex
perturbation eigenmodes, v.. (x, y)and w. (x, y), satisfy the linearized equations,

(b + iy =—1 — iN@% + v + B(B: — 10w + iF(x, y)vy
+ iug [Gx, ) (ulve + upwy + uve + uw)], (10)
(n+ i =—(1 — in)(8; + v + B8, + i9))v + iF(x, y)v-
+iu_[G(x, )iy + uywy + u¥v + ww)], (11)
(e — iINwe = —(1 + (2 + Bi)er + B(0; + i8,)*w_ — iF(x, y)ws
— iuf[G(x, yI(uaw, + ufl; 4+ uw. + uF), (12)

(p—idw. = —(1 + ir))(t)i + Bf,)w_ + B(8, — i@,,)3wf — iF(x, y)w_

— w*[G(x, Y uawse + v + uw + u®)], (13)
where we have defined a real function
_ a £g
EH= (U + | P+ PP A+ eQusl? + P W
As usual, the stability condition is Re(\) < 0 for all eigenvalues. j ‘K/VL
The system of equations (10)—(13) can be written as an eigenvalue probfent in the mafrixTorm:
LT = AT, /]i//’f (15)
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where

I-’]l le Ll} Ll«I
Ly Ly Ly Ly

Vi

vV

b L3 L;; Ly; Ly | = w. | (16)

Ly Ly Lys Ly W_
Lz = (1 — in(@; + 0)) — iF(x, y) — ius _[GCx, p) (0] + p, (17)
Lo = =30, — / + 19,)? — izl;_,—[G(x,y)(u*,,_ ), (18)
Lisgs = =[G, y) (s, )], Lasos = —iu_[G(x, y)(uy )], (19)
Lijs = —iuf[G(x, p)(uf )], Lyge = —iu®[G(x, y)(uf )], (20)
Lyzas = —(1 + in)(0; + 9)) — iF(x, y) — iuf _[G(x, y)(us )] — p, (21)
Lssas = 8(8s + ,—i0)) — iu¥ _[G(x, y)(u_,1)]. (22)

The spectrum of the linear-stability operator L was constructed by means of the Fourier collocation method.

To complete the formulation of the stability-analysis framework, we notice that, being interested in stable
dissipative solitons, a necessary condition is the stability of the zero background in equations (1)}-(3), which
obviously amounts to conditiong < 1 + a. On the other hand, a necessary condition for the ability of the
saturable gain to maintain nontrivial modes is that the largest value of f (n = |1, |> + |¢2]*) in equation (3),
which is attained at density

__a- ¢
VE(JE - JEa)

must be positive. The substitution of 1, in equation (3) yields a lower bound for g, which, if combined with the
above-mentioned upperone, g < 1 + a, defines the interval in which the gain coefficient may take its values:

Jea +Jl—e <g<l+a (24)

(the compatibility condition for a and ¢, following from equation (23), Vza + 1 — = < 1 + a,always
holds). An additional restriction on g is imposed by the condition that expression (23) must be positive too:

"y (23)

ca < g<a/e (25)
Note that for valuesa = 2and ¢ = 0.1 adopted here, interval (24) amounts to
1.396 < g < 3, (26)

while interval (25) is much broader and may therefore be disregarded.

Our objective is to constructs solutions of the CGLE system of equations (1) and (2) in the form of 2D bright
solitons morphed as bound states of two components with certain values of integer vorticities, m — 1 and
m + 1, so that they comply with the above-mentioned constraint, AS = 2. In polar coordinates (r, ), the
relevant solutions with real chemical potential j2 can be defined as

Vo = o (rexp[—ipt + i(m — 18], Y = @ (rjexp[—ipt + i(m + 1)8], (27)

with complex amplitude functions o, (r) satisfying the radial equations:

d? 1 d 1 s
L = - ] =i + i = ) ] A Gﬁ
He ¢ m)[drz rdr re (m ) ]

; [ d? 2m + 1d m? — 1
+ifs + Bl— + — + i
') ifo. + (d;"2 rdr 2 ](ﬁ)
\l‘/ ¢ =—(1—1in) " + li——L(m—{— 1) |0
\ = ) dr? " dr 12 -

i {/ 2 _ 2 _
+ife + :1( d1 2m—1d L m : i]@_—) (28)
‘J"‘V dr® r dr r-
é

re f is defined by equation (3), with |« | replaced by | ¢ |.

The boundary condition for equation (28) at r — 0 is that ¢, must be vanishingas r'"™'l at r — 0, except
or the case of m T 1 = 0, when the boundary condition is d¢, /dr|,—y = 0. Atr — ¢, soliton solutions must
eature the exponential decay

G (r) ~ r Y 2exp (= + iN)P), (29)

with A, > 0and, generally, a nonvanishing imaginary part of the decay rate, A;. The substitution of asymptotic
expression (29) in equation (28) and the linearization for the exponentially small amplitude functions leads to

4
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the relation between the imaginary and real parts

Yyt TE—E (30)
21 + AN

and a quadratic equation for A7,

41 £ A2+ 41 £ M) -0 +a—-g*=0, (31)
alarger root of which yields a relevant value, A} > 0 (here, sign =+ is unrelated to the subscript of ¢, ). An
essential consequence of equation (31) is that, while in the conservative model, in which the linear-loss factor,

(1 + a — g),does notappear, A? > 0is only possible for a negative chemical potential, ;2 < 0 (atleast, in the
physically relevant case of | 3] < 1), in the dissipative system z2 > 0 is admitted too. Indeed, all the numerical
solutions, reported below, have been obtained with i > 0. Further, it should be stressed that, as in the case of

generic dissipative solitons [56-58], relevant solutions exist only at isolated (positive) eigenvalues of . The
solitons are characterized by the total integral power (norm)

N= [ [t P + 1t pFldsdy = 27 [ 7 116, 0P + 16 () Plrdr. (32)

The analysis is carried out below for two most essential species of the soliton complexes, viz., VAVs
corresponding to m = 0 (so called because their components carry opposite vorticities, —1 and +1), and SV,
corresponding tom = 1, with component vorticities 0 and 2. For m = 2, bound states (27) resemble ‘excited
states’ of SVs, introduced in the model of the atomic BEC in [28] , and, as well as in that setting, it is plausible that
they are completely unstable.

3. Numerical results

Numerical solutions for the soliton modes were obtained by splitting complex functions ¢_ (r)exp [i(m + 1)6],
defined in equation (27), into real and imaginary parts, and solving the resultant equations in the Cartesian
coordinates by means of the modified squared-operator method [59]. The respective eigenvalues ;2 were found
simultaneously with the stationary modes. Stability of the stationary states was identified by means of systematic
direct simulations of the perturbed evolution of the stationary states, governed by equations (1) and (2), and, in
parallel, by calculating the stability eigenvalues, as determined by equations (15) and (16).

3.1. VAV complexes,m = 0
VAV modes, with i = 0, were constructed as solutions of the stationary equations, starting with the input
adjusted to vorticities =1 in the two components

é.(r) = ¢.(r) = @,rexp(—ar?), (33)

with some empirically chosen real parameters ¢ and v, a typical value being a = 0.05. As said above,
parameters 5 = 0, a = 2, = = 0.1, were fixed in equations (1), (2) and (28), while the SOC and gain strengths J
and g were varied. As a result, three coexisting VAV families were found, two unstable and one stable. Figure 1
represents them by showing their integral power (32) and the peak density

Yo (x L (34)

versus g, at fixed 3 = 0.1. In particular, the pair of unstable branches (continuous and dashed blue lines in
figure 1) emerge from a bifurcation point at

Nmax = max {|¢y.(x, ) +

g~ 1.84. (35)
The stable (red) branch is shown only in the relatively narrow window where it remains stable

2.047 < g < 2.097, (36)

which is bounded by vertical dotted lines in figure 1. Note that, although being much more narrow than interval
(24) determined by the above-mentioned necessary conditions, stability region (36) is located quite close to the
center of the broad interval (24). It is relevant to note that, the narrow interval (36), and similar intervals reported
below, can be realized in terms of actual physical parameters of laser cavities with the saturable gain and loss, as it

linearly, as a function of g, from (g = 2.047) = 0.127 to p2(g = 2.097) = 0.081. We'tress that
above, these values are positive, on the contrary to necessarily negative chemical
conservative models. As for the two unstable branches, they produce positive
interval (36).

follows from [20, 21, 25, 43].
As concerns the chemical potential of the stable branch, in the stability interval (36) it decrcas% ly
foned
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Figure 1. (a) The peak density (top), defined as per equation (34), and the integral power (norm), defined as per equation (32), of VAV
(vortex—antivortex) modes versus the gain coefficient, g, at the fixed SOC coefficient, 3 = 0.1, with other parameters fixed as in
equation (4). The solid and dashed blue lines represent two unstable families, and the red segment designates the stable one, in the
stability window (36), marked by vertical dashed lines. (b) The spectrum for the stable stationary VAV at ¢ = 2.070, which is marked
by the magenta dot belonging to the red branch in (a). (c) The spectrum for the unstable VAV found atg = 2.070, which is marked by
the magenta dot belonging to the blue branch in (a). In panels (b) and (c), insets zoom the vicinity of A = 0.

Atg < 2.047, the development of the instability of the branches shown by the blue lines in figure 1 leads to
their decay towards the zero solution, while atg > 2.097 the amplitude features exponential growth (blowup,
see figure 4). Inside stability interval (36), the stable branch (the red segment in figure 1) is an attractor: solitons
belonging to either unstable branch spontaneously transform into ones belonging to the stable branch, as shown
in figure 2. The outcome of the transformation is identical to the VAV mode that may be found as the stationary
solution, see an example in figure 3. We did not aim to extend the red branch in figure | into the areas where it is
unstable, i.e. ¢ < 2.047and g > 2.097, see equation (36).

As concerns (in)stability eigenvalues, produced by the linearized equations (15) and (16), typical examples of
stable and unstable spectra are displayed in figures 1(b), 3(b), and 1(c), 2(b), 4(b), 7(b) respectively. These results
are consistent with the conclusions made on the basis of systematic direct simulations of the perturbed evolution
of the VAV modes.

The results of the investigation of the VAV modes are summarized in figure 5, which displays the stability
region in the plane of the varying parameters, gand 3 (the gain and SOC strengths). [t is worthy to note that the
instability proceeds via the decay or blowup, without breaking the axial symmetry of the VAVs. This is a drastic
difference from the above-mentioned hidden-vorticity modes, which are also built as bound states of localized
components with vorticities S = +1 in the framework of the conservative system of nonlinearly coupled GPEs,
and arg paitly [50-52] or fully [53] unstable against the splitting instability, which breaks the respective vortex
ribg i ragments.
jdute 5 demonstrates that the stability window for the VAV modes remains narrow in comparison
witlminterval (26) defined by the above-mentioned coarse necessary conditions. The window exists too at /3 = 0:

“JJ 2.040 < g < 2.090, (37)

when SOC is absent, equations (1) and (2) being coupled only by the saturable gain and loss, see equation (3).
With the increase of the SOC coefficient up to relatively large values, 32 0.7, the width of the stability region
expands by a factor 222, still staying quite close to the center of the broad interval defined by necessary conditions
(26). Systematically collected numerical data demonstrate that the same conclusions remain true at other values
of parameters a and ¢ in the underlying model based on equations (1) and (2).

6
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Figure 2. The spontaneous transformation of an unstable VAV into its stable counterpartatg = 2.07, 3 = 0.1.(a) The top and
bottom rows display the amplitude and phase structure of the ¢, and - components, respectively, in the established stable VAV
complex. (b) Some eigenvalues in the stability spectrum of the initial unstable VAV. The inset zooms the vicinity of A = 0.(c) The

| spontaneous transformation, by means of the cross section of one component, [+, (x, 0)|. Both the initial unstable and final stable
| VAVsare designated by dots in figure 1, with the spontaneous transition between them schematically shown by the vertical arrows.

3.2. Semi-vortex (SV) complexes, m = 1
Composite soliton modes corresponding to ansatz (27) with m = 1 were found, along with the corresponding
eigenvalues /1, as stationary solutions initiated by input

&, (x, y) = ¢pexp (—ar?),
é_(x, y) = (¢y/10)r* exp (—ar?). (38)

Unlike input (33) which generates the VAV modes, here the amplitude of the vortex component is taken
essentially smaller than in the zero-vorticity component, because the vortex component in established SV modes
tends to have a relatively small amplitude [28-30].

The systematic numerical analysis yields a stability band for the SV modes shown in figure 6, which
demonstrates a situation generally similar to that displayed for VAV modes in figure 1, but with a stability
window

2.095 < g < 2.120, (39)

whose width is half of that defined by equation (36) for the VAVs. This interval, similar to its counterpart (36),
stays close to the center of the broad interval (26), which is defined by the necessary conditions considered above.

In the present case too, three branches of stationary solutions are observed in figure 6, viz., two unstable
ones, which emerge at the bifurcation point, that virtually exactly coincides with its counterpart for the VAV
states, given by equation (33), and a stable branch shown by the red segment in figure 6. Another similarity to the
case of VAV modes is that, outside the stability band (39), unstable SVs decay to zeroat g < 2.095, and undergo
blowupatg > 2.120. On the other hand, the comparison of figures 1 and 6 shows that the integral power of the
stable SVs is smaller than the power of the stable VAV, roughly, by a factor of 5.

The chemical potential of the stable branch decreases nearly linearly, as a function’of g, inythe sfabilipy
interval (36), from p(g = 2.095) = 0.159 to (g = 2.120) = 0.106, while i repfains nearlylcopstantin interval
(39) for both unstable branches. Note that all these values of the chemical potential pre positise]as they are for
the VAV branches considered above.




10P Publishing

~ New]. Pys.20(2018) 113019

T Mayteevarunyoo et al

- L L L
- -
., -~ 7
0 0.04 |
| |
‘ \
|
i
‘ |
|
0 \
-\‘ ‘
3000

2, (00)

Figure 3. (a) The top and bottom rows display the amplitude and phase structure of components ¢», and 4, respectively, in a stable
VAV mode foundat 3 = 0.8and g = 2.12, with integral power N = 571.5, peak density np, = 8.53, and positive chemical potential
p = 0.072. (b) Some eigenvalues in the stability spectrum of (a). The inset zooms the vicinity of A = 0. (c) Stability of this mode in
direct simulations of its perturbed evolution.

Aswell as in the case of VAV modes, the stable branch is, within the limits imposed by equation (39), an
attractor, as initial states corresponding to either of the two unstable families spontaneously transform into the
stable counterpart, keeping the SV structure. A typical example of the spontaneous transformation is displayed
in figure 7.

3.3. The system without the SOC terms
At /3 = 0, the vortex component of the SV vanishes, ¢'_ = 0, while the zero-vorticity one turns into an
axisymmetric dissipative soliton produced by the single equation (1):

0, = —(1 — in)(92 + 8y + il —1 + g — — - — | (40)
! 1+ =l ]? 1+ [

(redgllive actually set ) = 0). In the case of 3 = 0, essentially the same equation, with ¢ replaced by ¢/, , applies
two-component system with equal components, by substitution v = (1/+/2 ), . The numerical
so\) fon of equation (40) produces the respective stability window

2.090 < g < 2.130, (41)

\hich is somewhat broader than its counterpart (39), found for 4 = 0.1.

" The relative narrowness of the stability windows (39) and (41) in comparison with the ones given by
equations (36) and (37) for VAVs suggests that SV modes are more fragile in comparison with the VAVs. This
expectation is confirmed by the fact that, on the contrary to the situation for the VAVs, whose stability area tends
to expand with the growth of the SOC strength Fin figure 3, the increase of [ leads to shrinkage of the SV
stability window, which closes and does not existat 3 = 0.24 (not shown here in detail). Finally, figure 8
summarizes the findings in the plane of (a, g) for fixed ¢ = 0.1. Itis clearly seen that the region of stable zero
vorticity soliton is relatively broad at large values of a. Typical example of the spontaneous transformation of
unstable zero vorticity soliton is displayed in figure 9.
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4, Conclusion

The objective of this work is to construct 2D self-trapped states (dissipative solitons) in the system of CGLEs with
saturable gain and absorption for SOC (spin—orbit-coupled) modes of an optical microcavity yitheaturable gain
and loss, in the absence of any geometric trapping. The second-order linear differential offeratpr representing
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potential, but they were not found in the free space. Here, we have identified stable complexes of the VAV and SV
types, i.e. ones with vorticities (— 1, +1) and (0, 2)in the two components. The 2D solitons of the latter type are
quite fragile, being stable in a very narrow (but, nevertheless, existing) window. For the VAVs, the stability
interval, defined in terms of the gain coefficient, is rather narrow too, but it may be expanded by applying
stronger SOC.

Itis worthy to note that, on the contrary to the previously reported 2D localized states of the VAV, MM
(mixed-mode), and SV types, supported by the trapping potential [40], as well as single-component trapped [49]
and self-trapped [47, 48] vortices, the stability of the VAVs and SVs in the present system (including its
simplified form which does not include SOC) does not require the presence of diffusion terms (dispersive linear
losses, whose physical origin may be problematic) in the CGLE model. Due to the absence of the diffusion, the
2D dissipative system introduced in this work keeps the Galilean invariance, which suggests a possibility to
introduce moving solitons and simulate collisions between them (see [60]), as well as a possibility of forming
bound states of two or several dissipative solitons. These issues should be a subject of a separate work.
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