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The proposed framework is based on the unsupervised parsing of ballet dance movement into a structured
posture space using the spherical self-organizing map (SSOM). A unique feature descriptor is proposed to
more appropriately reflect the subtleties of ballet dance movements, which are represented as gesture tra-
Jectories through posture space on the SSOM. This recognition subsystem is used to identify the category
of movement the student is attempting when prompted (by a virtual instructor) to perform a particular
dance sequence. The dance sequence is then segmented and cross-referenced against a library of gestural
components performed by the teacher. This facilitates alignment and score-based assessment of individual
movements within the context of the dance sequence. An immersive interface enables the student to review
his or her performance from a number of vantage points, each providing a unique perspective and spatial
context suggestive of how the student might make improvements in training. An evaluation of the recognition
and virtual feedback systems is presented.
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1. INTRODUCTION

The comparison and synthesis of captured motion data taken in real time from the
trainee against the reference (trainer) data are the main issues in the virtual reality
(VR) dance training system. The development of accurate analytical tools and systems
is highly desirable [Ho et al. 2013; Komura et al. 2006]. This article presents a method
to address these issues based on two techniques: automatic dance gesture recognition
and the 3D visual feedback to effectively assess student performance and training. This
is particularly applicable to the classical ballet dance.

Classical ballet techniques are based on distinct aesthetic ideals. Compared with
other forms of dance, ballet is a highly technical and disciplined style of dance. Move-
ments are of an exacting precision and rely on strong core stability and good posture.
The fundamental theoretical principles of classical ballet techniques include [Ward
2012] alignment-maintaining verticality of the torso, placement-minimal displacement
of the pelvis from the center position, turnout-maximum external rotation of the lower
limbs, and extension-maximum elongation of the lower limbs.

In traditional teaching, the demonstration-performance method [Yang et al. 2012] is
employed to teach students physical and mental skills. A demonstration must be given
by the instructor, which will then be imitated by the students under close supervi-
sion. Instructors provide their students with feedback based on their performances by
informing them how their movement response compares to the ideal template or pro-
totype for their particular discipline. The efficacy of this feedback depends largely on
the instructor’s ability to identify the aspects of the response that prevent the learner
from attaining the skill objective [Armstrong and Haffman 1979]. While the longevity
and frequent use of certain instruction theories and cues may imply that they have
validity as useful teaching aids, it seems clear they would also stand up to scientific
scrutiny. At this point, however, ballet dance training relies more on a qualitative than
a quantitative sense. As such, the application of computerized systems for assessment
and training of dance remains a topic that attracts considerable research interest.

A number of research works based on quantitative methods have appeared that have
attempted to develop an objective and systematic means of analysis of dance techniques
[Kulig et al. 2011; Bronner and Ojofeitimi 2011; Shippen and May 2010; Gamboian et al.
2000; Simmons 2005; Bertucco 2010]. All these works investigate the biomechanical
properties of human movement by quantification and analytical description of body
movement patterns using kinematic as well as kinetic data. These are captured by
computerized instrumentation (i.e., video and 3D motion analysis). Here, the aims
are to provide a biomechanical description of dance movements to inform dancers
and dance instructors of the typical way to perform a standard movement [Bronner
and Ojofeitimi 2011; Wilson et al. 2007; Couillandres et al. 2008] and to explore the
relationship between dance movements and injury [Kulig 2011; Mayers and Bronner
2010]. It is now possible for a computerized system to capture kinematic data from
dance teachers to use as a reference and obtain relevant kinematic variables to analyze
ballet techniques [Ward 2012].

The aforementioned works explore the use of quantitative measurement tools that
could potentially be used to evaluate the progress and technical development of individ-
ual dancers, as well as for evaluating teaching practice (i.e., measuring the ability of the
ballet teacher to accurately identify errors in the performance of typical balletic move-
ments). The latter issue is important, since the recognition and positive reinforcement
of correct technique may provide encouragement, increased motivation, and confidence
to students. Under this paradigm, the value of the measurements taken is based en-
tlrely on the representational validity of the characteristics selected for the feature
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virtual reality training method can be even more sophisticated than this. In particular,
the feedback the training system provides doesn’t need to be exclusively quantitative
in the form of score but may also involve a visual comparison of virtual characters
[Chan et al. 2011] or the synthesis of dance partners “on the fly” [Ho et al. 2013].

We take this idea further with computational intelligence to enable the system to rec-
ognize the student’s dance gestures with a trajectory of postures over possible gestures.
This computational intelligence is implemented in a fully immersive virtual reality
system, the cave automatic virtual environment (CAVE). With an explicit model of a
student’s gestures, assuming a desired goal, the approach uses a trajectory of postures
within a self-organizing spherical structure to predict the target gestures, given their
actions. So the dance teaching problem is inverted into the problem of predicting the
student’s gestures. This is followed by an assessment of the student’s performance and
visual feedback in the CAVE, allowing high degrees of view and freedom of interaction.
Section 3 describes how to obtain this predictive model.

To date, there has been a distinct research emphasis on the visualization phase
and, therefore, finding better virtual representations of dances. So much emphasis is
placed on the technique of mimicking the dance teacher that quantitative measures
and feedback are crude or nonexistent, essentially requiring the students to follow the
virtual teacher [Kavakli et al. 2004; Chua et al. 2003; Hachimura et al. 2004; Yang et
al. 2002]. Under this paradigm, learning ability is entirely based on the virtual rep-
resentation of characters driven by the student’s motion capture data and the ability
of the student to follow a virtual teacher. Based on this mimicking learning, however,
repetition of material without feedback does not necessarily result in improved perfor-
mance. In some recent papers [Chan 2011; Alexiadis et al. 2011; Naemura and Suzuki
2006; Raptis et al. 2011; Becker and Pentland 1996], an alternative to this learning
paradigm was proposed, in which the student assessment can be performed with rapid
feedback using a standard automated protocol. The main activities in this approach
consist of analyzing a student’s motion against the desired (teacher’s) dance steps and
synthesizing the virtual character accordingly. Students participating in this process
would receive feedback on the accuracy of their performance and on specific areas for
which their accuracy is poor and thus in need of attention. Given the importance of
structured learning in skill acquisition [Ericsson 1993], this tool could therefore be a
valuable source of feedback and, as such, a very useful resource for dance training.

The proposed system can accommodate all the important requirements that arise in
connection with standard methods of teaching elemental ballet. A novel framework is
proposed for the real-time assessment and visualization of ballet dance movements, as
performed by a student in an instructional VR setting. We utilize MS Kinect to capture
skeletal joint tracking for acquisition of human movement data. The performance
evaluation is provided in the form of 3D visualizations and feedback through the CAVE.
In an offline process, the movements of a teacher are represented as gesture trajectories
through unsupervised posture space on the spherical self-organizing map (SSOM).
Four types of templates, based on the bag-of-words model, are utilized for indexing the
gesture trajectories. In an online process, the dance sequence of a student is segmented
and cross-reference against a library of gestural components performed by the teacher.
This facilitates alignment and score-based assessment of individual movements within
the context of the dance sequence.

An impediment to research on virtual reality is the lack of degrees of view and
freedom of interaction. In real training with human instructors, students can observe
the teacher from different angles. Until recently, presentations by virtual instructors
were limited to what could be seen in a two-dimensional image projected on a scree
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Fig. 1. System architecture.

This tracking system may be used to determine the content to be displayed on the
screens, and thus the learner can perceive the virtual content. In place of the 2D visual
screen and head-mounted display (HMD), the proposed system uses a CAVE to provide
a better field of view and more freedom of interaction to accommodate effective feedback
in dance training.

The architecture of the proposed system (shown in Figure 1) includes four compo-
nents: Kinect motion capture, CAVE, gesture recognition, and gesture database. The
goal of the system is to recognize a sequence of predefined movements performed within
a dance sequence and to identify the occurrence and duration of these movements in
the dance sequence when a beginner attempts such movements. The recognition mod-
ule extracts occurrences (phases) from the beginner’s performance and then assesses it
against the teacher’s (ground-truth) movement. Finally, the system visualizes both the
teacher’s and the student’s dance sequences (or isolated movements) in a VR setting.

The rest of the article is organized as follows: In Section 2, we discuss related works.
Section 3 describes dance representation. In Section 4, the gesture recognition method
is introduced. In Section 5, visual feedback is explained. Sections 6, 7 and 8 provide
the evaluation of the proposed system and the conclusion, respectively.

2. RELATED WORK
2.1. Quantitative Studies in Ballet Dance

In order to assess classical ballet movements, 2D and 3D kinematic data have been
used. The 2D technique has been used in the early stages of development: video of
ballet movements [Barnes 2000; Deckert 2007] and 2D computerized motion analysis
[Bronner and Ojofeitimi 2006]. Recently, the majority of the quantitative studies on the
kinematics of ballet have used 3D motion analysis [Kulig 2011; Wilson 2007; Golomer
2009). The types of ballet movements studied were based on the “Seven Moveme
of Dance” outlined in Jean-George Noverre’s early manual of instruction™
tic (narrative) ballet [Noverre 1760], which are plié, relevé, pirouettes, sauté,
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battement, and glisser. Noverre’s famous manual is the original source from which
many teaching methods still used today are derived. With respect to the quantita-
tive analysis of the plié movement, features are extracted to characterize the knee
joint using video data [Barnes 2000] alignment of the torso [Krasnow 1997], and pelvic
placement [Holt 2011]. The relevé movement has been analyzed through the feature ex-
tracted to characterize the joint reaction forces and torque/moments at the ankle joint
[Lin 2005] and from EMG data to assess motor control strategies [Masso 2004]. For
the pirouettes movement, the quantitative technique is used to describe the whole-body
angular momentum of the shoulder, arm, hip, and leg [Imura 2008] and the moment
torque of the supporting leg [Imura 2010]. For the élancer movements, knee joint me-
chanics have been analyzed to determine the injury to the knee soft tissue [Kulig
2011], as has the estimation of muscle lengths for ballet dancers regarding injury in
repetitive motion [Shan 2005]. For the battement movement, 2D video and digitiza-
tion techniques were implemented to analyze pelvic movement during the battement
movement [Deckert 2007].

From the previous discussion, the literature studies show that computerized instru-
ments provide an effective means for quantitative analysis of human movement, in
particular for the assessment of classical ballet dance. This is the motivation for the
current work’s development of a new dance training system that not only provides
quantitative analysis of ballet dance but also automatically recognizes ballet gestures
for assessment and virtual reality feedback, offering an effective method of enhancing
dance learning.

2.2. Computational Techniques for Virtual Reality Dance Training

2.2.1. Instruments and Systems for Dance Training. Recently, there has been an increase in
research interest in the development of a computer vision system for dance training and
dance game entertainment. Various kinds of dance have been studied. These include
Latin dance [Yang et al. 2012], hip hop dance [Yang et al. 2012], Agogo dance from
Ghana [Deng et al. 2011], aerobics dance [Bobick et al. 2001], Shasa dance [Ho et al.
2013], ballroom dance [Uejou et al. 2011], and street dance [Naemura and Suzuki
2006]. As with the biomechanical research field, a majority of the research works in
the analysis of human movement related to dance rely on 3D motion data, as with
the works done in Raptis et al. [2011], Deng et al. [2011], Clay et al. [2009], Yang
et al. [2012], Uejou et al. [2011], Bobick et al. [2001], Ho et al. [2013], and Alexiadis
et al. [2011] (which employ a marker-based optical 3D motion capture system and
Kinect system), whereas some works, as in Bobick et al. [2001] and Naemura and
Suzuki [2006], employ a 2D image sequence. The general process for a dance training
system starts with collecting data, followed by segmenting the dance sequence into
meaningful sequences, recognizing the individual dance sequence, and giving feedback.
However, to date, the research work that covers all aspects of this process at once is
limited.

2.2.2. Recognition of Dance Gestures. Once the data for a full dance sequence has been
collected, it can be analyzed into a series of movement phrases, which are in turn
composed of linked dance gestures. To do this, we use a segmentation algorithm. Real-
time segmentation is preferable to offline processing. The study in Barbic et al. [2004]
shows that principal component analysis (PCA) and probabilistic PCA techniques are
capable of offering online segmentation of motion capture data, according to high-level
behavior (e.g., walking, running, punting). In comparison, the Gaussian mixture model
(GMM) technique can be used as a batch process. For a dance sequence captured by
video instruments, Bobick [2001] shows that the temporal template matc mg meth
is effective for temporal segmentation of dance. This method also addresses 11
to linear changes in speed and runs in real time. 5

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 2, Article 23, Publication date: March 2015,




23:6 M. Kyan et al.

Regarding the recognition task, the first main component is the feature set, which
can be extracted from 2D and 3D data. The work in Schuldt et al. [2004] shows that
local features extracted from the image sequence are robust to variations in scale, that
is, the frequency and velocity of motion patterns for recognizing human motion, such
as walking, running, jogging, and hand waving. These features can be transformed into
a histogram of the class index of K-mean (i.e., bag-of-word technique) and passed to the
SVM model for recognition. The work in Lv et al. [2005] constructs a motion template
to represent a type of basic human action. Given the 3D joint position trajectories, a set
of 2D data called motion channel is constructed to encode the evolution of a single joint
coordinate for a specific action class. A weight parameter can be associated with this
motion channel according to its discriminative power. Thus, this weight contributes
to the effectiveness of the recognition stage, where a multiscale template matching is
proposed to deal with possible temporal scale changes. The feature types represented
in Schuldt et al. [2004] and Lv et al. [2005] are, however, only applied to basic human
motion. The classifier in Lv et al. [2005] does not consider the joint distribution of
motion features, which is important to identify complex dancing moves. In a dance
sequence captured by the Kinect sensor, angular skeleton representation [Raptis et al.
2011] can be used to map the skeleton motion data to a smaller set of features, each
of which is a scalar time sequence. The full torso is fit to a single frame of reference
in order to compute the first- and second-degree limb joints. This process results in
a feature set that is robust to noise, removing dependence on camera position and
avoiding unstable parameter configurations such as near gimbal lock.

Measuring the similarity between two motion-captured data streams can be done by
time-series techniques. A fixed similarity metric such as Euclidean distance, usually
employed for this task, is inappropriate because of the inherent variability found in
human motion. This problem can be overcome by a dynamic time warping (DTW)
technique that aligns the time axis before calculating Euclidean distance [Keogh 2002].
However, it has been proven that DTW can only address the problem of local scaling
and ignores global scaling. The latter scaling technique is very capable of solving the
problem of variability in the speed of human motion [Keogh and Palpanas 2004]. Tang
et al. [2008] proposed a similarity measure based on machine-learning techniques.
The joint relative distance scheme is used as the basic feature. This is employed for
training the system to compute the similarity of arbitrary motion pairs. When the
skeleton data is characterized by a type of feature, a specifically designed classifier can
be constructed. For example, based on the angular skeleton representation, a cascaded
template matching is built for dance gesture classification [Raptis et al. 2001]. In
training, the static model (prototype) is built for each gesture. In testing, the classifier
correlates the input feature with the prototype gesture models and computes log-
likelihood scores for each class. The winning match is then identified by ranking these
scores, which is followed by performing rounds of logistic regression tests among the
top classes.

In a VR system related to dance, recognition of gesture not only allows for retrieving
the correct (teacher) gesture corresponding to an input student gesture but also allows
the retrieved gesture to be used in the synthesis of the virtual dance partner. Deng et al.
(2011) address the problem of real-time recognition of the user’s live dance performance,
to be used in determining the interactive motion to be executed by a virtual dance
partner in an interactive dancing game. In that work, the partial encoding method
is employed by first partitioning the human skeleton model into different body parts,
each of which is then indexed by a separate SOM codebook and used for recognition.
Such partial encoding has two advantages: (1) reducing the computational cost by
partitioning whole-body motions with high dimension into a set of body-paxt motio

(
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of low dimension and (2) avoiding the disharmony that usually occurs between different
body parts in dance.

2.2.3. Student Assessment and Feedback. In some dance training systems [Kavakli et al.
2004; Chua et al. 2003; Hachimura et al. 2004; Yang et al 2002], students can learn
dance by watching videos or animations. Demonstrating and imitating the full dance
at once is, however, not a practical way for people to learn because the whole dance may
contain a lot of information for students to remember and learn [Yang et al. 2012]. More-
over, dance knowledge is acquired primarily through muscle learning and muscle mem-
ory, while watching a dance being demonstrated provides only faint meta-kinesthetic
awareness, not the actual muscular involvement that performance does. The absence
of the experience of muscular learning is addressed in the VR motion training system
in Yang et al. [2002], which uses the idea of the “Ghost Metaphor,” where the motion of
the trainer in real time is superimposed on the trainee. The trainee observes the motion
and follows the ghostly master to learn the motion. This system, however, can only give
demonstration and cannot give any quantitative feedback to help students improve.
Besides the superimposed method, Naemura and Suzuki [2006] also studied other basic
visualization methods, which are face to face, face to face with mirror effects, and face
to back. The results show that the superimposed method is the most effective for the
repetition of partial movements, while the others are effective for whole movements.
Some of these visualization methods are incorporated into our research. The present
work offers visual feedback, providing the student assessments that can take the form
of either a summative score or visual display that highlights the differences between
the teacher’s and the student’s performance. In other words, the proposed system has
the ability to sense the leaning task, thereby ensuring that the leaner’s motions are
captured and analyzed, and that the system provides trainees with feedback, notifying
them how nearly their performance mirrored the teacher’s.

To overcome the lack of feedback, some dance training systems work on quantita-
tive measurement of a dancer’s performance level [Chan 2011; Alexiadis et al. 2011;
Naemura and Suzuki 2006; Raptis et al. 2011; Becker and Pentland 1996]. The work
in Naemura and Suzuki [2006] associates motion features extracted from video with
rhythm elements of dance action, which in turn shows a strong correlation with the
subjective evaluation of performance levels. In Raptis et al. [2011], once the system
identifies the best-matched class of human gesture, it examines how “well” the student
performs this gesture compared with the teacher. DTW with exponential scaling of
time-space is implemented to achieve the comparisons and obtains scores as an out-
put. In the T’ai chi teaching system [Becker and Pentland 1996], the learner can play
back and see the segment during which motion is most different from the expected
motion for the gesture. The system then acts out the idealized motion of the gesture.

It is noted that the tasks for obtaining the score and visual feedback discussed here
face difficulties stemming from the noise present in the skeleton data and the fact that
humans exhibit a wide spectrum of ability to replicate a specific motion. This also makes
it difficult to synchronize the student’s character with the teacher’s during the visual
feedback in a manner that allows the student to differentiate the two motions. The
visual feedback can be viewed as a motion synthesis problem, a data-driven animation
where the motion-capture data can be used to control and direct a virtual character.
This allows the student to immediately see his or her movement compared with the
teacher’s, using the simulated dancer. For instance, the motion synthesis system in
Arikan and Forsyth [2002] uses a graph structure to effectively search for human
motions that satisfy low-level user constraints, for example, a particular pose in
particular time instant.
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Fig. 2. Illustration of 10 segments of dancer’s body.

Apart from the visual feedback method discussed earlier, a different strategy for
teaching dance with feedback is to generate a dance lesson automatically according
to learning objectives [Yang et al. 2012; Yang et al. 2013]. Here, instead of comparing
student motion with the teacher models, the system uses the input dance sequence to
automatically generate the lesson plan for students. The learning objectives are formed
from the extracted dance patterns in order to further develop the knowledge structure.
The system delivers the final output as a learning path to students who immediately
see and need to mimic the teacher’s moments.

3. FEATURE EXTRACTION

Elementary ballet training consists of the repetitive performance of a number of tran-
sitions from one basic posture (the body cuts a form in space, and the feet, limbs, hands,
wrists, torso, shoulder, and head have harmonious relations with one another, which in
elementary ballet are in large measure pre-established, being set by convention) to an-
other and another (the sequence of transitions from posture to posture can be extended
arbitrarily). The transitions from posture to posture must conform to a strict meter (the
time interval between each posture/form in space and the next has to conform exactly
to the requirements of the meter), and this rhythmic quality provides the basis for the
evaluation of the sequence of transitions; further, the form that the body cuts in space
(the disposition of the various parts of the body in relation to one another) must also
closely approximate the ideal for that “posture” (in more advanced training methods,
these forms in space become less conventional and instead reflect the imagination of
the choreographer, who strives to create unique forms in space and imaginative forms
of transition). We restrict ourselves to the more conventionally defined postures and
transitions of elementary ballet and try to develop a ballet training system based on
the recognition or movement patterns for teaching these elementary transitions—it is
our intention that the system reflect necessities for assessing rhythmic precision of the
performance and how closely the form the student’s body cuts in space matches the
idea.

The Microsoft Kinect system provides 20 three-dimensional skeleton points to rep-
resent each player (student) in the camera’s field of view. To eliminate the invarianc
of the dancer’s size and camera orientation, we obtain a set of 19 angle fée
the 20x 3 skeleton matrix for each person in a frame [Raptis 2011]. Figure 2 s
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Fig. 3. The upper and lower coordinate systems extracted from dancer’s torso. X, Y, and Z, are the
reference axes of the upper torso plane; X;, Y7, and Z; are the reference axes of the lower torso plane.

10 parts of the human body used for feature extraction. We treat the torso as two parts:
the upper torso and the lower torso. These will be used as the reference for other parts
including the left/right arm, the left/right forearm, the left/right leg, and the left/right
foreleg.

In performance, ballet dancers often bend, tip, and twist their torsos in various ways,
many of which do not occur in daily activities. Identifying these variations is important
for the accurate recognition of ballet gestures. The upper torso, which includes the
spine joint and the left/right shoulder joints, can be treated as an upper foundation
for other upper body segments. In the same way, the lower torso, which is made of the
spine joint and the left/right hip joint, can also provide other lower body segments a
reference coordinate system.

As illustrated in Figure 3, we build two 3D Cartesian coordinate systems based on
the two sets of three joint points. In the upper torso system, the x-axis, X, is aligned
with the line that connects the shoulders, oriented from left to right. We set the y-
axis, Y,, to be aligned with the line that is perpendicular to X,. The z-axis, Z,, of the
orthonormal basis is also perpendicular to other two axes, and its direction is given
by the right-hand rule, which is often used in vector cross-product. Accordingly, in the
lower torso part, the x-axis, X}, is aligned with the line that connects the left and right
hip joint, and the axis orientation is also from left to right. The y-axis, Y}, is aligned
with the line that is perpendicular to X; and must pass through the spine joint, which
is shared between the upper and lower torsos. In both systems, the orientations of
two y-axes pointing upward are canonically given. Finally, the z-axis, Z;, in the lower
system is also obtained from the right-hand rule.

As shown in Figure 4, we separately project the x-axis, y-axis, and z-axis of the
upper torso coordinate system onto the X; — 7, X; — Y}, and Y; — Z; planes to obtain
a provisional projected coordinate system {X',,Y’,, Z',}. The orientation variance of
the corresponding axis between {X;,Y;, Z;} and {X',, Y',. Z',} coordinate system can
represent the different status of the dancer’s torso. Consequently, there will be three
angles, «, 8, and y, which are angles between the x-axis, y-axis, and z-axis in these two
coordinate systems, respectively. These angle features indicate the degree of twisting,
tipping, and bending movement.

In this system, we use the upper and lower torso as references and m e ot
joint angles relative to these references. The first set of joints adjacent to th ()

£
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Fig. 4. Three angles features of torso: «, 8, and y.

F

i

Jz
Upper Torso

Fig. 5. Two angle features of left elbow (LE), § and &, in relation with the upper torso from the left shoulder
(LS).

includes elbows and knees. We represent these points relative to the torso. The second
set of joints includes the hands and the feet. Thus, there are in total eight joints that
need to be translated into their corresponding upper and lower torso coordinate system.
To be precise, Figure 5 shows the feature extraction at the left elbow (LE). The two
angles are calculated when the LE is projected onto the X, — Y, and Y, — Z, planes:

—_—
e Left-right swing 6—the angle between X, and(LS, LE,,), where LE,, is the projection
of LE onto the X, — Y, plane

e Forward-backward swing ¢ —the angle between Y, and (LS, LE,,), where LE,, is
the projection of LE onto the Y, — Z, plane

As a result, with this representation model, each joint is represented with two angles,
{8, £}. We denote the set of features obtained from skeletal frame as

f={a B, v.0LE €LE. SRE, €RE, OLH, €LH, ORH . €RH, OLK, ELK, ORK. ERK . OLF, ELF, ORF, ERF(}I-)
where LE = left elbow, RE = right elbow, LH = left hand, RH = right hand, LK = left
knee, RK = right knee, LF = left foot, and RF = right foot. We can also denote this set
of features in time series as f = {f; (¢).i = 1, ..., 19} and emphasize the fact that we
reduced the complexity of our input from a collection of 19 three-dimensigi
a set of 19 one-dimensional vectors.
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L] 2 ] 4 s

Fig. 6. Temporal sequence of postures representing an arbitrary movement. A simple “gesture” of five
postures is displayed. The mapping of the gesture forms a trajectory on the SSOM in red.

In the experimental results reported in Section 6, we used the angle features de-
scribed by Equation (1) for dance gesture recognition. As for comparison of recognition
performance, we also used the normalized locations of all 20 joint positions, which are
described by

1={i@),i=1,...,60}, (2)

where [; is the location of the joint in one of the x/y/z planes. By considering all 20
joints in the three dimensions, the dimension of 1 will be 60. Here, the location [ is
normalized by considering the hip as the original location.

4. GESTURE RECOGNITION

The general approach taken in performing gesture recognition is to first automatically
parse samples from across the spectrum of expected dance movements into a discrete
set of postures (Section 4.1). This is achieved using an SSOM structure (Figure 6). In
general, an SOM enables learned postures to be allocated to, and distributed across,
nodes on a predefined lattice (map). The SSOM [Sangole et al. 2006], in particular, is
well suited to distributing such postures so that they are separated in a maximal sense
[Gonsales and Kyan 2012]. This property results from the wrap-around neighborhood
learning that occurs when the lattice forms a closed-loop sphere. The utility of an SOM-
based approach to parsing is that the discrete space is constructed in such a way as
to retain associations that exist in the original input space; that is, postures (learned)
are positioned in the map nearby to other postures that are very similar in nature. As
a consequence of this topology-preserved mapping, a sequence of continuous postures
(due to a movement or gesture) is expected to trace a rather smooth trajectory on the
map. It is from this trajectory (sequence of key postures) that we formulate descriptors
representing each gesture.

Due to variance in input posture sequences (sensor noise, inexact repetitions, etc.),
multiple trials of the same gesture are projected onto the map, from which a gesture
template may be constructed (Section 4.2). The goal of this template is to model the
relative importance of certain postures within the gesture and also to promote gener-
alization when detecting similar (but not exact) movements.

In the recognition stage, we consider an appropriate matching process, in which an
unknown dance movement is associated with each gesture template, and the gesture
class inferred. This process can be achieved in both an offline and online (real-time)
context and will be discussed in Section 4.3. The purpose of recognition is to isolate
or segment a continuous dance performance into the core set of linked gestural move-
ments, which may then be compared quantitatively against known teacher movemen
(discussed in Section 5) in order to construct meaningful instruction ahd fee

performance.
p

A, o
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4.1. Building Posture Space

The construction of posture space amounts to the training of the SSOM using a random
set of sample postures from the supervising (teacher) set of gesture movements. In
practice, these samples are captured by Kinect (discussed in Section 6.1). It is important
to note that the temporal order of posture samples is not important for building posture
space; rather, the training set should provide a reasonable distribution over the range
of postures that might be performed.

We define the training set X; as the set of (teacher’s) gestures g, ,.:

X =1(811.812 813 - -+ &) (3)

where g, ,, is the nth instance (recording) of gesture class ¢, and xf , € % is the posture
feature vector of g, , at time ¢:

gc,n = [x(];‘u’ xr.z',n’ cEhgt xg.ﬂl' (4)

The dimension of each posture feature vector D is dependant on the particular feature
representation used. For joint positional data, where there are 20 individual 3D joints
(x,y,2z), D =60, while for the proposed dance feature (discussed in Equation (1)), D = 19.
Ultimately, nodes in the map (arranged into a spherical lattice) will compete via a
learning mechanism (Algorithm 1) to represent input posture vectors from X,.

The map’s spherical lattice is constructed by progressively subdividing a regular
icosahedron down to a desired level (/). This results in a series of nodes uniformly
arranged on a tessellated unit sphere (with uniform triangular elements). A sphere
tessellated one level (I = 1) would result in 12 nodes, while (I = 2) and (I = 3) would
each result in lattices of 42 and 162 nodes, respectively. Each node on the sphere is
then represented by a weight vector w; ;» € 2, which models a key posture from the
input space X;. The total number of nodes represents the number of postures that can

ALGORITHM 1: Spherical Self-Organizing Map (SSOM)

input: map configuration (see Table I.)
output: weights for all nodes in the map W ;

Initialize weights w; ;. (small random values)

repeat _
Get next input: a’ = randomly select from training set X,
. D s
Calculate node error: o= 0l a) 3o %k = waiii
n=1
Select BMU: (i.j. k) =min|E};,}
Update BMU & neighbors: ‘
W by (ne w) = W ik (Old) +a [-‘f — Wy jk)* (Old)]

where:

o= [ (f:f‘f—mjﬂz) = predefined learning rate

NE; juy = [ (Neyete) = neighborhood of BMU
(decreases with N;yce)

NE;,;tiw = initial neighborhood size (radius)

¢ (i, jx) = count dependent, nondecreasing

function used to prevent cluster underutilization

Increment N,y
until N,,..>Max Epochs; r\/

2z 5
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be learned by the map. In this representation, nodes are each equidistant from their
immediate neighbors, with which they form a hexagonal neighbourhood.

The training phase of the SSOM is identical to the conventional 2D SOM. Given the
input space X; and the weight vectors w; jx, the system conducts learning according
to the following process [Brennan et al. 2007]. First, the input posture vectors x*' are
randomly introduced to the SSOM. For each input ¢, the best matching unit (BMU) is
selected. The BMU is the node on the map that is closest to the input x* according to
some similarity measure (e.g., L1 or L2 norm). In Algorithm 1, this similarity measure
is denoted by E; ;,. We denote the BMU as (i, j, k)*. Second, information from x* is

imparted to both the BMU node’s weight vector w; ;- and the weight vectors in this
node’s immediate neighborhood on the map. This process of information sharing allows
the map nodes to fune themselves to characteristic postures in the input space while
forcing nearby nodes to tune to related or adjacent postures. Third, the same learning
steps are repeated for remaining input vectors from the training set. As new input
postures are presented from the training set, alternative BMUs compete for their
representation, resulting in a locally organized distribution of key postures over nodes
on the map. Finally, learning may be terminated after a fixed number of iterations
or changes in node weights become negligible. In our case, we cease learning after a
maximum number of iterations (cycles) have been reached.

4.2. Building Gesture Templates

Training of individual gesture templates involves projecting a set of labeled gesture
sequences onto the learned posture space. For each posture sample from an input
gesture, the projection involves finding the BMU and using this node to index the
input sample. After projecting a temporal sequence of postures onto the map, an output
sequence of indices results. The projection can be described as a sequence s, , of node
indices or a trajectory #. , of individual node positions on the spherical surface (defined
in a 3D coordinate system). As the sphere is of the unit radius, the trajectory can also
be thought of as a sequence of 2D spherical coordinates.

In this work, we consider a number of alternative descriptors for a gesture instance
and class given the sequence or trajectory traced on the SSOM:

(1) Posture Occurrence (PO)

(2) Posture Sparse Codes (PSCs)

(3) Posture Transitions (PTs)

(4) Posture Transition Sparse Codes (PTSCs)

4.2.1. Posture Occurrence (PO). PO is analogous to the popular bag-of-words (BOW)
approach adopted in information retrieval (document and content-based image/video
retrieval). In essence, each posture on the SSOM can be considered a unique word, while
each gesture is a collection of individual words—structured according to a particular
grammar (e.g., set, sequence, etc.). By aggregating the occurrence of postures in a
gesture against the indexed set of nodes on the map, a histogram may be formed (over
a single gesture or set of similar gestures), thus forming a template that may be used
in recognition. In this first descriptor, a histogram is formed for each instance n in the
teacher’s gesture sequence H, , = hist(s.,). A template histogram for the gesture class
may also be formed by summing over the set of H, ,, wherec = 1.2, .... K represents
the set of gesture classes:

N
_ Z”:l HC.H

PO, =
|20 Hen

: )

—
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4.2.2. Posture Sparse Codes (PSCs). PSCs are similar to posture occurrence histograms;
however, the sparse code only represents the existence of a set of postures, and not
their frequency of occurrence. For instance, if a particular gesture involves a set of
five postures, some of which are held for a length of time, then the sparse code will
only indicate that they occurred and won’t consider the duration. This offers a time-
invariant measure of posture existence and is useful when detecting gestures that may
be performed at different speeds. The sparse code can be obtained from H. ,:

1, if H.,(G) >0

SC, (i) = IO’ otherwise ©

One might then consider a histogram of sparse codes PSC¢ over the set of gesture
instances as a representation for each gesture class template:

N
PSC, = L’;ﬂ_lﬁgfl (7
| =R, SCen

4.2.3. Posture Transitions (PTs). The first two templates do not consider the temporal
arrangement of postures in the map. In the same way that individual nodes in the
map are indexed, so too are pairs of postures from the map. By forming histograms
over the occurrence of transitions between any two postures in the map, a template is
constructed that considers a bag of segments: collating partial sequences from within
the gesture, thereby incorporating temporal aspects of the gesture trajectory through
posture space. The descriptor allows for some generalization by not requiring strict
adherence to an exact sequence over the whole gesture, but rather, it emphasizes
shared partial sequences that co-occur across gesture samples in the training set.
Posture transitions can be generated using an adjacency matrix A;;, where the i, jth
entry represents the occurrence of the transition from postures i — j in the indexed
set of map nodes. Occurrences are aggregated by passing a sliding window (size = 2)
over the posture sequence s, ,.

4.2.4. Posture Transition Sparse Codes (PTSCs). PT'SCs are analogous to sparse codes of
postures, only they represent the existence of transitions rather than the frequency of
transitions. In the definition of PTSCs, it is possible for there to be transitions from
a node to itself (i.e., when a movement remains in a given posture for a brief period).
By considering the sparse code of these transitions, extended periods within the same
posture will not dominate the descriptor.

4.3. Recognition Framework

In order to perform matching between an incoming gesture g, and known templates
(discussed in Section 4.2), the incoming set of postures is projected onto the SSOM
to extract the unknown posture sequence s,. This projection may be conducted offline
(after the student has performed a set of moves) or online (as the student is performing
a set of moves).

In either case, the task of recognition is nontrivial, due to the differing lengths of
gestures (across classes) and the differing speeds with which they may be enacted
(by the student/teacher). In order to address this, we propose an online probabilistic
framework (inspired by the work of Kawashima et al. [2009]). Like Kawashima et al.,
we adopt a simple Bayesian framework for progressively estimating an updated pos-
terior probability P(c|s,) for each of the ¢ = 1...K gesture classes. In the work of
Kawashima et al., the likelihood is computed at each unit of time by considering t
single posture triggered on the map and whether or not it occurred in
template. The likelihood P(s,|c) was computed as the ratio of the existenc

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 2, Article 23, Publication date: March 2015.



An Approach to Ballet Dance Training through MS Kinect 23:15

current posture in gesture c¢ to the total number of different postures in c¢. In this
work, we reframe the likelihood as a histogram intersection (Equation (11)) between a
progressively growing sequence s, (inclusive of postures from time ¢y to ¢), which may
be described as a histogram of either PO, PSC, PT, or PTSC (defined in Section 4.2),
versus the corresponding template histograms for each gesture class.

In this framework, we consider A to be the histogram feature for the current sample
at time ¢, and A, to be the histogram template for class ¢. We thus define (for time %)
the posterior P(c|hs), likelihood P;(hs|c), and prior P;(c) probabilities according to the
following:

Py(hs|e) Py(c) Py(hs|c)Py(c)

Bl = "0~ T Bkl Pe) ”
Py(hglc) = HI(hs, h) ©)

fl(’ ift=t
PL‘(C) = Pg_l(Clhs) : HI(hsv hc) otherwise o

ZK Pg_1(0|hs) : HI(hSa hc)!
HI(hs, he) = 1= ) minlhy, heil. S8y

The mechanism for inferring the appropriate gesture class is summarized in
Algorithm 2. According to the previous equations, the input sequence is allowed to
accumulate postures over time ¢, where for each instant, the accumulated gesture is
projected onto the SSOM to generate a posture sequence, which can be converted into
one of the four histogram representations from Section 4.2. Likelihoods are estimated
as histogram intersections (Equation (11)) between each template histogram and that
computed from the input posture sequence. A perfect intersection with a template will
yield a likelihood of 1 for a given class. It is important to note that all histograms
are normalized (even if calculated from a gesture sequence containing only a single
posture).

As the sequence begins to resemble a gesture from the known set, its posterior will
grow and eventually surpass a detection threshold T. Upon triggering this threshold,
the class ¢ with the maximum posterior is considered detected, and the system resets
the priors for all classes and recalculates the posterior. At this point, in order to free up
postures from the accumulated sequence, ¢ is set to the current time; thus, the newly
considered sequence grows again from this instant (flushing all past postures). This
process continues, triggering new instances of detected gestures, until the end of the
input sequence is reached (or in the case of online detection, the system stops acquiring
input posture data).

5. DANCE VISUALIZATION AND USER FEEDBACK

Typically, there will be three stages in the student’s interaction with the system. First,
the student will watch as a virtual teacher demonstrates a gesture (this step in the
process will be driven by gesture data from the database). Second, the student will
attempt to repeat the dynamic phrase the virtual teacher just performed. When the
student has completed his or her performance, the system gesture recognltlon functm ’
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ALGORITHM 2: Gesture Recognition Using Histogram Intersection
input: gesture sequence g, = [*%, ..., &', ... aT|

output: P, (c|hy); argmax, ; { P (c|hs))

Sett =1t =0;
repeat
Let input gesture g, = [#*,..., 2]
Calculate the likelihood F, (hs|c) using Equation (9)

Calculate the prior P, (¢) using Equation (10)
Calculate the posterior probability F; (c|h;) for all ¢ using Equation (8).

If max [P, (c|hs)] > T (let T = threshold)
=t
reset prior P, (¢) = 1/ K
recalculate posterior P (c|hs)

t++
until ¢ > T (end of input sequence);

student will watch the feedback provided to him or her in an immersive 3D environ-
ment. The feedback will furnish the student with information about how closely his or
her performance imitated the teacher’s.

After the dance element as performed by the student is recognized, an immersive
visual feedback based on a VR environment will be used to allow students to examine
the differences between their performance and the teacher’s and to discern which
parts of their performance most need improvement. In the CAVE system, the teacher
dancer and the student will do their performances in a full 3D environment as often
as needed and, at the same time, can allow the student to view their performances
from the audience’s vantage point and present to the student a real-time analysis of
the performances. The following three types of feedback and two types of playback are
provided in our visual feedback subsystem.

5.1. Feedback Mode

A metronome is employed to synchronize the time-series motion data between student
and teacher. The dancer usually performs dance according to his or her “internal clock”
[McAuley et al. 2003]. An assumption can be made that the most likely perceived beat
of the metronome for a rhythmic pattern is based on the beat match of an internal
clock of the dancer. Ideally, the timings when the dancer stretches out or draws in his
or her limbs must, to an extent, match the rhythm of the metronome. However, this
does not take into account the variability in the speed of human motion; for example,
a dancer may perform a fast or slow segment of his or her body part. The DTW can
be adopted to handle timing variation, since it can offer the solution for the time-
alignment problem of the time-series signal [Raptis et al. 2011; Keogh et al. 2004].
Thus, successful synchronization will allow better visual feedback and meaningful
scores when comparing student performance with the teacher.

Once the system identifies the best-matched gesture class, the question remains as
to how well the student is able to perform this gesture compared to the teacher. The
feedback methods are described as follows:

5.1.1. Side by Side. Virtual models will play back the most recent performance of t
student and the teacher side by side, each in its own half of the screen (s
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(b) (©)

Fig. 7. (a) The control panel of visualization part. (b) Side-by-side feedback. (¢) Overlay feedback.

The system also provides for the student and the teacher models to face each other
while performing this dance element, to have their backs to the audience, or to stand
facing the audience, though the last is generally the most useful. When the student
is in the CAVE, with the “magic wand,” he or she can adjust the angle of view on
the teacher’s performance and examine how it appears from two alternative vantage
points.

5.1.2. Overlay. A second way of playing back the student’s most recent performance
of a dance element involves overlaying the student’s performance on the teacher’s. As
shown in Figure 5(c), because the virtual student’s appearance is somewhat different
from the teacher’s, after the alpha value for the virtual student is set to 0 to 0.5, it is
easy for a viewer to distinguish the virtual student’s performance from the teacher’s
and to see where the two diverge (indicating areas the student must work on).

5.1.3. Score Graph. The student’s performance is scored and the score presented to
student in the form of either a number or a curve (trace). After setting the time
alignment of the time-series data, the value of the curve at point ¢ is calculated as
follows:

Secore; = 1 —d,,

:\f
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where d; is the relative distance at time ¢ between the student’s features and teacher’s:

N
esi - Qi

d = Z max¢; — miné; |’
13 L

=

(13)

where 6; and 6 are the ith feature angles of the teacher and the student, respectively,
and N is the total number of features. Thus, the curve allows the student to see
how closely his or her performance resembles the teacher’s across the duration of the
performance—to see, then, by the development of the curve, where the performances
diverge and where they converge. When the similarity measure is less than a predefined
threshold, the curve turns red.

5.2. Playback Mode

One key element in ballet training is the synchronization of movements to music.
Kassing and Jay [1998] stress the importance of precision in ballet by saying that stu-
dents must learn to be at a certain place on a certain beat. The beginning and endings
of dance phrases have particular importance. We will call the relative arrangements
of the body parts at these highly significant moments “key postures.” To help reinforce
the importance of these key moments, we have developed three playback modes, which
are normal mode, key posture mode, and tempo mode.

Normal Mode: The feedback will be display normally at the rate of 30fps without
pause. Key-Posture Mode: In this mode, the virtual student’s and teacher’s performance
are all supposed to match the cadence points in the music. The performance can be
halted for up to 2 seconds at every beat point to allow the divergences between two
key postures to be examined. After 2 seconds have expired, both performances begin
in sync. Tempo Mode: Among the key problems in teaching beginning students dance
is to get them to perform “on the beat”—that is, to develop the facility to time the
key postures so they occur at cadence points in the music and to perform the dance
elements rhythmically, giving its various phases harmonic relations with one another.
The performance of the virtual teacher and student can be paused separately at his
or her corresponding key postures. Because the teacher’s key postures are supposed
exactly on beats, the teacher still will be paused at its beat. However, the student’s
key posture may be advanced or delayed relative to the teacher’s performance, and
the student would know how he or she could adjust his or her speed to correct timing
errors. After they are all paused for 2 seconds, the two sequences will continue to play
back together.

6. PERFORMANCE EVALUATION

The proposed system outlined in Figure 1 was implemented. The CAVE has four stereo-
scopic projectors and screens correspondingly. Driven by a graphics cluster of five nodes,
one node serves as the cluster master while the other four drive the corresponding
screens. The user wears active stereo glasses containing targets of several light refrac-
tion markers in a fixed geometry. The location and orientation of the user’s eyes are
traced by a 6-degree-of-freedom (6DOF) tracking system. A tracking server calculates
each target’s position and orientation based on images captured by tracking cameras
distributed on top of the screens. The tracking data is used to determine the content
to be displayed on the screens. We used the 3D Unity game engine and visual C# to
implement the feedback engine and interface with the Kinect sensor. MiddleVR was
used to control the graphics in the CAVE.
7

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 2, Article 23, Publication date: March 2015.



An Approach to Ballet Dance Training through MS Kinect 23:19

Table I. SSOM Training Configurations Considered

Parameters Co | C1| C2a | C2b | C3a | C3b
Icosahedron level | 0 1 2 2 3 3
Map nodes 12 | 42 162 162 642 | 642
Neighborhood(s) 2 3 4 6 4 6
Epochs 50 50 100 100 100 | 100

Table Il. Isolated Gesture Database

Ballet Gesture # Instances (# Frames)
Label | Description Teacher Student

Gl 1st Position — 2nd Position | 8 (56-96) 5 (50-62)
G2 2nd Position — 3rd Position | 10 (57-77) | 5 (35-62)
G3 3rd Position — 4th Position | 8 (59-75) | 5(51-58)
G4 4th Position — 5th Position | 10 (48-81) | 5 (49-74)
G5 5th Position — 6th Position | 10 (43-80) | 5 (58-74)
G6 6th Position — 1st Position | 10 (41-88) | 5 (46-65)

Table lll. Continuous Gesture Database

Ballet Dance # Instances (# Frames)
Label | Postures (Gesture Sequence) Teacher | Student

D1 Rest— 1st—2nd— 3rd—4th—5th—Rest | 1(281) 1(273)
(G6,G1,G2,G3,G4,G5)
D2 Rest— 1st—5th—4th—3rd— 1st—Rest 1(270) | 1(277)
(G6, XX*, ~G4, ~G2, XX, ~G6) 1(270) | 1(277)

* XX = no representation.
~ Indicates the reversal of a gesture.

6.1. Gestural Subsystem Configuration and Test Data

A number of configurations were considered for the training of posture space (Table I).
All maps were trained according to two input spaces (for the joint position described by
Equation (2) and angle features described by Equation (1), respectively). For brevity,
we restrict our discussion to the analysis of results pertaining to SSOM configuration
C2a.

In training gestural trajectories, and as a proof of principle for the proposed frame-
work, two datasets were constructed: one representing Teacher (used for both con-
struction and testing of gesture recognition performance) and one representing Stu-
dent (used for testing only). The databases include a set of six isolated gestures
(i.e., each gesture G1 to G6 is recorded individually, independent of any sequence of
other movements/gestures). The structure of this database is summarized in Table II.
Figure 8 shows the six basic positions (i.e., six postures) of ballet dance. Gesture G1 is
the dance gesture moving from the first position to the second position. All gestures,
G1 to G6, are defined in Table II. In order to assess the online capability of the system
to recognize and isolate gestures from a continuous dance sequence, a second database
was constructed (Table III). In this, recordings were collected for two different se-
quences of dance movements (D1 and D2). Again, for brevity, we restrict our attention
to D1 (for which all component gestures have a representation in our trained posture
space).

6.2. Stability of Posture Space Projections

In the first set of experiments, observations are made as to how the variability i
repeated gestures maps into posture space. Figure 9 shows a series of 'mappi
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P4 P5 P6

Fig. 8. Six basic positions in ballet dance. First position (posture 1): both arms lifted in front. Second position
(posture 2): both arms opened. Third position (posture 3): left arm in front and right arm lifted up. Fourth
position (posture 4): left arm open to the side and right arm lifted up. Fifth position (posture 5): both arms
lifted up. Sixth position (posture 6): both arms put down.

gesture instances (columns) per gesture type (rows). A visualization of the SSOM
and associated gesture trajectories shows that even differences in frame length and
duration of the gesture (variations of up to 40% difference in frame length) do not
appear to impact the consistency with which the gesture maps onto posture space. All
gestures appear to trace quite characteristic and repeatable paths on the unit sphere.
The start (solid blue marker) and end points (solid red marker) of the trajectories are
also shown. Although gestures G5 and G6 are quite similar in terms of the postures
traced, there is quite a clear difference in the direction of the trajectory.

In Figure 10, trajectories are mapped using the dance feature. Again, the repeated
patterns on the SSOM indicate consistent mapping into posture space. In this case, it
would appear that the dance feature traces quite a wide trajectory (relative to the joint
position feature), using up much more of the sphere. It is clear from these mappings
that the paths traced for different gestures are quite unique from one another, which
is expected to translate into better discrimination between trajectories (and therefore
gestures).

In both scenarios, the consistency of the mapping indicates some stability in the
representation of gestures and suggests that sufficient overlap should exist when gen-
erating histogram templates.

6.3. Static Gesture Evaluation
In order to assess the performance of the SSOM posture space representatj
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Table IV. Isolated Gesture Recognition — Posture Occurrence (SSOM: C2a; Teacher)

Average Recognition Accuracy% Average Recognition Accuracy%

(10 Trials) (20% Train, 80% Test) (10 Trials) (40% Train, 60% Test)
Gesture | Joint Positions Dance Angles Joint Positions Dance Angles

L1 L2 HI L1 L2 HI L1 L2 HI L1 L2 HI

Gl 100 | 100 | 100 | 100 | 100 100 | 100 100 | 100 | 100 | 100 | 100
G2 97 93 97 100 | 100 | 100 | 98 95 98 100 | 100 | 100
G3 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
G4 100 | 100 | 100 | 79 64 79 100 100 | 100 | 91 90 91
G5 98 95 98 90 80 90 100 | 99 100 | 91 91 91
G6 98 92 98 100 | 99 100 | 99 96 99 100 | 100 | 100
Overall | 98.8 | 96.7 | 988 | 94.8 | 90.5 | 94.8 | 99.5 | 98.3 | 99.5 | 97.0 | 96.8 | 97.0

Table V. Isolated Gesture Recognition — Posture Sparse Codes (SSOM: C2a; Teacher)

Average Recognition Accuracy% Average Recognition Accuracy%

(10 Trials) (20% Train, 80% Test) (10 Trials) (40% Train, 60% Test)
Gesture Joint Positions Dance Angles Joint Positions Dance Angles

L1 L2 HI L1 L2 HI L1 12 | HI L1 L2 HI

G1 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
G2 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99 99 99
G3 925 | 925 | 925 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
G4 92 92 925 | 96 90 96 100 | 100 | 100 | 100 | 98 100
G5 100 | 100 | 100 | 80 90 81 100 | 100 | 100 | 81 92 82
G6 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
Overall | 974 | 974 | 974 | 96.0 | 96.7 | 96.2 | 100 | 100 | 100 | 96.7 | 98.2 | 96.8

isolated gesture database (Teacher). In this section, two test cases were considered:
the first using a (20%:80%) ratio of training samples to test samples and the second
using a (40%:60%) ratio. In other words, from the full set of Teacher gestures, 20%
(e.g., two of 10 instances from each gesture) were randomly selected and used to form
gesture templates, while the remaining 80% were classified against those templates.
This process was repeated for 10 trials, and the accuracy of classification was recorded
per class (for each set of input features and similarity metrics). Here, the template
matching was performed by three similarity metrics: L1 norm, L2 norm, and histogram
intersection. The L1 norm is defined as

D
b, Bely = D |hgi — heil. (14)

i=1
The L2 norm is defined as

D
\hs, k|2 = (Z |hs.i — hc,i|2)- (15)
i=1

Histogram intersection is defined by Equation (11). The second experiment followed
the same process but instead using 40% of samples to generate gesture templates, with
60% used for classification. The results are displayed in Tables IV to VII.

From this data, for G1, G2, G3, and G6 (and with the exception of highlighted angles),
the dance feature angle appears to be more robust over several trials (20% and 40%
training set, respectively). It would appear that there are some discrepancies in th
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Table VI. Isolated Gesture Recognition — Posture Transitions (SSOM: C2a; Teacher)

Average Recognition Accuracy% Average Recognition Accuracy%

(10 Trials) (209 Train, 80% Test) (10 Trials) (40% Train, 60% Test)
Gesture Joint Positions Dance Angles Joint Positions Dance Angles

L1 L2 HI L1 L2 HI L1 L2 HI L1 L2 |HI

Gl 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
G2 100 | 100 | 100 | 100 | 100 | 100 | 97 94 97 100 | 99 100
G3 92,5 | 92,5 | 92,5 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
G4 92 92 925 | 79 64 79 100 | 100 | 100 | 91 90 91
G5 100 | 100 | 100 | 88 80 88 100 | 97 100 | 91 89 91
G6 100 | 100 | 100 | 100 | 99 100 | 100 | 97 100 | 100 | 100 | 100
Overall | 974 | 974 | 974 | 945 | 90.5 | 945 | 99.5 | 98 995 | 97.0 | 96.3 | 97.0

Table VII. Isolated Gesture Recognition — Posture Transition Sparse Codes (SSOM: C2a; Teacher)

Average Recognition Accuracy% Average Recognition Accuracy%

(10 Trials) (20% Train, 80% Test) (10 Trials) (40% Train, 60% Test)
Gesture Joint Positions Dance Angles Joint Positions Dance Angles

L1 L2 HI L1 L2 HI L1 L2 HI L1 L2 HI

G1 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
G2 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
G3 92.5 | 92,5 | 925 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
G4 92 92 92.5 | 96 92 96 100 | 100 | 100 | 100 | 100 | 100
G5 100 | 100 | 100 | 87 89 87 100 | 100 | 100 | 89 90 89
G6 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
Overall | 974 | 974 | 974 | 972 | 968 | 97.2 | 100 | 100 | 100 | 98.2 | 98.3 | 98.2

feature. Having said this, recognition performance is quite high for all scenarios, in
part due to the simplicity of the gesture movements recorded.

If considering the noisy data in these “problematic” gestures, it seems evident that
the sparse code histograms (of either posture occurrence or posture transition) appear
to improve recognition performance. In addition, sparse codes of posture transitions
appear to give the best performance overall. It should be noted that the approaches
based on posture transitions (or their sparse codes) consider temporal information from
the gesture, so it would seem justified that performance is improved.

The performance of joint positions alone cannot be discounted, although this may
be due to the simple motions conveyed by the gesture set. It would seem plausible
that a positional feature might be suitable in a multiresolution framework, for either
filtering out coarse-grained body postures or filtering/constraining recognition to an
appropriate subset of gestures, when a large-scale set of complex gestures is to be
recognized. For fine-scale recognition or recognition of more complex movements, the
dance angle feature proposed seems appropriate.

6.4. Generalization Performance in Gesture Recognition
In this experiment, we attempt to assess whether the methods we have developed
for the recognition of our basic set of gestures in performance can be generalized
to an expanded set of gestures. Based on the six postures discussed previously (see
Figure 8), we define a new set of gestures, Set I, which contains a total of N gestures.
Here, N = Zﬁ’:l (p — 1), where P = 6is the total number of postures. Table VIII show
a matrix describing the definition of all gestures. In the table, giving thel $ix post
P; to Pg, the gesture G;; is formed as an isolated gesture moving from the ith pa
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Table VIII. Definition of the 30 Gestures
P] P2 P3 P4 P5 Ps

Pi|. Gia | Giz | Gy | Gys | Gis
Py | Goy | - Goa | Gog | Gos | Gos
Py | Gar | Gsz | - Gas | Gas | Gas
Py | Gy | Gyz | Gug | - Gys | Gy

Ps | Gs1 | Gsz | Gs3 | Gsg | -
Ps | Ge1 | Ge2 | Ges | Ges | Ges
Note: P; is the ith posture. Gj; is the gesture

performed from the ith posture to the jth pos-
ture. Gjj is the reversal of the gesture Gj;.

Gse

Table IX. Isolated Gesture Database

# Instance for Each Gesture
Gesture Teacher | Studentl | Student2 | Total Instances
Gesture Set I: G2, G13, G14, G15, Gas, 10 10 10 450
Gog, Gaa, Gas, Gag, Gaa, Gas, Gas, Gs,
Gys, Gsp
Gesture Set II: Go;, Ga1, Ga1, Gs1, Ger, | 10 10 10 450
Gaz, Gag, Gso, Gez, Gaa, Gs3, Ges, Gsa,
Ges, Ges

to the jth position (i.e., moving from posture P; to posture P;j). This definition forms
the gesture set, Set [, in the upper triangle of the matrix, containing Gg, ... ,G1s; Gas,
... ,Gag; ... ,Gsg, which has a total of N = 15 gestures. By contrast, the gesture G;; is
the reversal of the gesture Gjj. The reversal gestures form the gesture Set II, which
contains gestures in the lower triangle of the matrix. The total number of gestures is
obtained from the union of Set I and Set II, which contains 2 x N = 30 gestures.

We first used the nonreversal gestures in Set I. Three datasets were constructed:
Teacher dataset, Studentl dataset, and Student2 dataset. The Teacher dataset and
Studentl dataset were used for both construction and testing of gesture recognition
performance, whereas the Student2 dataset was used for testing only. Thus, the Stu-
dent2 dataset is considered as unseen data to the trained system. The database includes
15 isolated gestures (i.e., each gesture is recorded independently of any sequence of
other movement/gesture). The structure of this dataset is summarized in Table IX. In
order to assess the performance of the SSOM posture space representation, gesture
template definitions, and matching criteria, the system was trained by a (50%:100%)
ratio of training samples. From the full set of Teacher gestures and Studentl ges-
tures, 50% (e.g., 10 of 20 instances from each gesture) were randomly selected and
used to form gesture templates, while all 100% were classified against these templates.
This system employed the SSOM configuration C2a and trained according to the joint
position feature.

Table X shows the performance of the proposed system for recognition of ballet
dance performed by three people, Teacher, Studentl, and Student2. The system can
attain more than a 98% recognition rate averaged over 15 classes for recognition of
the Teacher dataset by using the PT template and histogram intersection (HI) for
similarity matching. The PO template also gave similar recognition performance to
the PT method. Moreover, the system can recognize dance from the Studentl dataset
at 100% accuracy by using the PO template and L2 norm for similarity matching. It
can also be observed that by using other students’ data for testing (e.g.,
dataset), the proposed system can still achieve the average recognition accurac
ol
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Table X. Gesture Recognition Results Averaged over 15 Gestures Defined in the Upper Triangle in Table VIII

Testing Average Recognition Average Recognition
Data Descriptor Accuracy (%) Testing Data Descriptor Accuracy (%)
L1 L2 HI L1 L2 HI
Teacher PO 96.7 | 98.0 | 96.7 Student?2 PO 90.7 | 92.0 | 90.7
(unseen data)

PSC 79.3 | 84.0 | 79.3 PSC 69.3 | 72.0 | 69.3

PT 98.7 | 97.3 | 98.7 PT 91.3 | 88.7 [ 913

PTSC 87.3 | 92.7 | 87.3 PTSC 67.3 | 73.3 [ 67.3
Studentl | PO 94.0 | 100 | 94.0

PSC 77.3 | 853 | 717.3

PT 94.7 | 99.3 | 94.7

PTSC 86.0 | 92.0 | 86.0

The system was trained by 50% of datasets from Teacher and Studentl and tested for all 100%.

Table XI. Gesture Recognition Results Averaged over 30 Gestures Defined in Table VIII

Average Recognition Average Recognition
Testing Data | Descriptor Accuracy (%) Testing Data | Descriptor Accuracy (%)
L1 L2 HI L1 L2 HI
Teacher PO 77.7 | 743 | 777 Student 1 PO 66.7 | 66.3 | 66.7
PSC 58.0 | 61.3 | 57.7 PSC 54.7 | 56.0 | 54.7
PT 96.0 | 79.3 | 96.0 PT 88.3 | 73.3 | 88.3
PTSC 83.0 | 84.3 | 83.3 PTSC 79.7 | 83.0 | 76.7

These include the reversal of gestures. The system was trained by 50% of datasets and tested for all 100%.

as 92%. This shows the generalization capability of the trained system for recognition
of the unseen data.

Next, we used two sets of gestures, Set I and Set II, described in Table IX for the
experiment. This database contains 30 gestures, where each gesture G;; has its corre-
sponding reversal Gji. Gesture Gz is described by the movement from the first position
to the second position, whereas Gg; represents the movement from the second position
to the first position. In this case, the POs of G132 and Gg; may be similar, and thus, they
may be incapable of discriminating the two gestures for recognition. The PTs, on the
other hand, may preserve the direction of the movement within the gestures, and they
may be employed for discrimination of the reversals. This is confirmed by the results
shown in Table XI. The proposed system was trained by a (50%:100%) ratio of training
samples. Both Teacher and Studentl instances were randomly selected for the train-
ing set. It can be observed from the result that the gesture template obtained by PT
outperforms other indexing methods discussed. The recognition rate averaged over 30
gesture classes can be attached at 96%. However, the system has a lower performance
at about 88% for recognition of the Student dataset. This may be because the dance
sequences performed by the student may be inconsistent as compared to the teacher.

6.5. Online Recognition of Continuous Gestures

6.4.1. Progressive Versus Metronome Posture Sampling. In order to assess the utility of the
online approach to recognizing and segmenting continuous gestures, the use of his-
togram intersection directly on a sample of postures (at time t) is initially explored.
In this test, we consider two approaches to sampling postures online. In the first,
the input sequence is continuously aggregated and converted to a progressive his-
togram that is matched against the templates for each gesture using the HI metnc
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Fig. 11. Continuous dance movement recognition using histogram intersection directly, computed from
(1) progressive histogram (top): (a) Teacher, (b) Student; and (2) metronomic histogram (bottom): (¢) Teacher,
(d) Student.

even though the set of postures is accumulated from the beginning (and no postures
are dropped), there are clear increases in the HI similarity: for example, at frame 50,
there is a peak for G6, and at frame 140, G1 peaks, followed by G2, G3, G4, and G5.
This is true for both Teacher and Student datasets and corresponds to the expected
sequence of gestures (see Table III). The problem is that the degree of similarity is not
high, and it becomes difficult to choose a threshold that can work across gestures. In
the second test, we consider the fact that the gestures are performed with the guidance
of a metronome, which ticks every 50 frames. The metronome is a simplified surrogate
for the beat or rhythm that may be associated with music accompanying the dance
sequence. Given that the dancer attempts to synchronize with this rhythm, we aggre-

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 2, Article 23, Publication date: March 2015.



23:28 M. Kyan et al.

= asterior o MGWMW<DHSIMH'I!“ Postedor Probabilty Trace (Posture Transitions) - D {Studen: et e
il ! il
G 3 i 4 5
1 £ i T REEE . PEEEET - 1l . N v s b ] ] £
T T - T = o -

R

g ! go
- il , , 5] i
= o v ] - ol o o fmes W & £ (] . s
' VLR = & - g2
I U :. | 2 Y l|
Bt 7 g g Y B j
y ) i i o
W it T 50 Y i o1 i i) ] Ve
i . ey
Z'wul.f'alinl.'i’:_ AU
| y I
30 ex : { 3o |
' ) f Ly | i
13 ||L| r:i"”' ,1" ;g‘n et | R 4 YeaaamSie ) e ﬁfﬁ e r‘c' SN o 7 L]
'
- AT :
8 ;':l'e i i | |
“
- iy g
£3 7 e L % 1 11131ke 4
W o . 1 i | IORRRNER SR oiinas MM SMNPRN WORSRPIUUU VRN | 1 O, AN
P 'Exﬁ“w‘i e e g w :
i ] 1
£ su .
a8 Ty ]
- FANSL o """"_,,‘.—‘.“" " e & b= 3 i £l £ £ | P i b v
8 Geslure Pr Trace {Using Postetior  Dance D1 (Student] . Gesture Prediction Trace (Using Posterior » Dance D1 [(Student)
1 i 1 Y r T
[ 1 |
- | '
S et e ! B
| ‘ {
@ | 1
a | | g |
a4 1 5'.‘ L
| ! i |
s | . i j ;
| ! ‘ | i
8 | I H | 3| [l
2} | i . it 1 S I
: f ( ! il
{ | | { | | ||
il i i , il | - .
a 7] 100 183 &0 F=] X i 0 0 i £ o T

Fig. 12. Online recognition of Teacher (dance D1 gestures). Left top: posterior traces based on posture
occurrence. Bottom left: class prediction trace for posture occurrence. Right top: posterior traces based on
posture transitions. Bottom right: class prediction trace for posture transitions.

of peaks reflecting the presence of each gesture, with some boosted similarity; however,
there is still no clear way to set a detection threshold or condition that can work for
all gestures. To this end, we employ the Bayesian framework outlined in Algorithm 2,
which will be evaluated in the next section.

6.4.2. Bayesian Recognition Using Histogram Intersection. In the final set of recognition ex-
periments, we evaluate the performance of the proposed Bayesian framework outlined
in Section 4.3. In the first test case, the dance D1 is considered, and the online recog-
nition is applied for both the teacher and student, using the posture occurrence and
posture transition descriptors, respectively. The posterior probability is captured as a
trace (for each gesture class) over the duration of the dance sequence. Results for the
teacher sequence are shown in Figure 12, while results for the student are shown in
Figure 13.

The results for the teacher show that, for both descriptors, the posterior appears to
be quite robust in estimating and switching between gestures. The maximum posterior
is selected as the prediction of the gesture class at each time sample in the sequence
(shown in Figure 12, bottom left and right). The prediction has been able
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Fig. 13. Online recognition of Student (dance D1 gestures). Left top: posterior traces based on posture
occurrence. Bottom left: class prediction trace for posture occurrence. Right top: posterior traces based on
posture transitions. Bottom right: class prediction trace for posture transitions.

this result, the system can accurately recognize the teacher’s dance gestures from the
continuous sequence D1 with 98.6% accuracy (calculated as a percentage of incorrectly
detected posture samples over frames 50 to 260, Figure 12). It is apparent that there
should be a class to capture derelict cases of postures other than the learned set;
otherwise, the posterior will attempt to lock onto the best representation for the input
(e.g., G5 at the beginning of the sequence).

The result for the student’s performance is also quite satisfactory, as the people
performing the movements are different from the teacher and, more so, their ability to
repeat the correct movement is somewhat limited. Regardless, with some minor noise,
the selection of gesture class appears to follow the actual sequence (i.e., recognition
accuracy of 84.3% to 89%, also calculated as a percentage of incorrectly detected posture
samples over frames 50 to 260, Figure 13). When confusion does occur, nearby postures
are selected for a relatively brief period before switching back to the correct gesture.

One can see that it should also be possible to augment this approach by further
employing the metronome idea; one might sample the posterior only at set beats in the
rhythm of the dance. As can be seen from the gesture prediction traces in Figure 13,
sampling the posteriors at metronomic locations (every 50 frames in thiS-ease) wo
again result in a quite smooth and robust extraction of the correct gesture seq
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Fig. 14. Illustration of side-by-side feedback.

Fig. 15. Illustration of overlay feedback.

is also observed that, with respect to gesture selection, the posture transition provides
an improved result over the posture occurrence.

6.6. Results on Student Assessment

Figures 14 to 17 show some pictures of the proposed system for dance training with the
student. These include the side-by-side feedback (Figure 14), overlay (Figure 15), and
scoring feedback (Figures 16 and 17). In each case, the student wears stereo glasses
with optical markers to observe her performance, which allows visualization in 3D.
From the experimental data explained in Section 6.1, we obtained the best teacher
dance data and used them as templates for each gesture. The experiments here were
aimed at comparing the student’s dance performance to the teacher plates a
the recognition stage. Figure 18(a) shows the plot of the summation scores.co
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Fig. 18. Illustration of the performance of the student’s performance compared to the teacher in terms of
average score: (a) shows the score when the student performs each gesture six times, and (b) shows the
average of results in (a).

performance that are most relevant. Anybody, even people completely lacking in dance
training, would be able to reproduce the teacher’s performance with a high degree of
accuracy from the beginning. In this context, the amount of improvement we would
expect is low. The fact that we have observed a detectable, albeit slight, improvement
is exactly what we would expect. We therefore take this as evidence that the system is
responding well.

We look forward to using more difficult choreographic routines as we/d

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 2, Article 23, Publication date: March 2015.



An Approach to Ballet Dance Training through MS Kinect 23:33

the teacher’s performance will be greater and that the amount of convergence detected
in repeated attempts will increase.

7. SYSTEM LIMITATIONS AND FUTURE WORK

With regard to system architecture, there are several elements that need improvement
(work we intend to undertake). The first concerns noise introduced by the Kinect sensor.
In our experiment, we tested the system for the recognition of gestures composed of
the six positions of basic ballet dance (Figure 8). When we enlarge the set of postures
(forms cut in space) beyond that rudimentary set, it becomes important to capture
the whole skeleton correctly. In the current version of Kinect, it is required that the
dancer face the Kinect; thus, postures that involve bending backward or the occlusion
of particular joints are not correctly captured by the system. As a result, the current
system has difficulty capturing some balletic movements such as Pirouette en dehors,
which is a turning movement in which the dancer spins on the spot while standing
on one leg with the heel raised. In our experiment, we also observed that Kinect
sometimes detected the leg joints inaccurately. It is difficult to capture some dance
movements that concern the forms the legs cut in space, movements such as Grand plié,
Battement devant, Temps levé, Glissade dessus, and Grand jeté elancé en avants. The
noise from Kinect affects our recognition and assessment system in two ways. First, as
concerns the recognition stage, the resulting SSOM trajectories of dances in the same
gesture classes (as shown in Figures 9 and 10) will be slightly different from other
samples in the same classes. As a result, the templates of the noisy trajectories result
in lower accuracy of performance/gesture recognition. Second, for the visualization and
assessment of the dance performance, the similarity score between the skeleton data
of the teacher and student may be degraded by the high level of noise from the sensor.

In addition to sensor limitations, it is important to consider the fact that the dataset
used in this work is limited in its diversity. In dealing with larger-scale data, it will be
important to consider the possibility of incorporating a number of different teachers
into the training set. In this sense, the approach taken for training gesture templates
using the SSOM will be unchanged, and it is expected that posture transitions and
gesture segments that commonly occur will be captured and emphasized—that is,
variability between teachers will be naturally de-emphasized by the system. Testing
on a larger and more diverse set of students (from a broad range of body types and
skill levels) will need to be conducted. In addition, training the SSOM on a full range
of detectable ballet postures is also necessary to enable a more complete spectrum of
gesture sequences. This also warrants in-depth analysis of SSOM sizing in relation to
the number of different postures expected.

Another element that needs further work is the gesture indexing method. In the
current implementation, the bag-of-words approach is used to measure the statistics of
the coding labels of the SSOM codebook. We have studied only the posture occurrence
and posture transition as well as their associations. We have not fully exploited the
trajectory of the gestures encoded on the SSOM. It is evident that the transitions
from posture to posture (or from one form in space to next) preserve more temporal
information about the meter of dance sequence than the postures (forms in space) do
themselves, and, consequently, including reversal gestures in the dataset results in
higher accuracy (this is discussed in Section 6.4). In order to fully exploit the gesture
trajectory on the SSOM, a suitable method for statistical analysis of sequential data
such as a hidden Markov model (HMM) is necessary. This may increase the recognition
accuracy.

The final element that needs improvement is the 3D visualization in the CAVE.
In the current implementation, the visual feedback is provided by th erlay a
the side-by-side feedback. Even though we provided a side-by-side feedback nt
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feedback mainly made use of the front projection wall and not much use of the two
side walls. This is because the user needs to stand at a distance from the Kinect in
order for his or her whole body to be detected. In this case, the two side walls are
not fully utilized. We suggest in a future work to make use of the two side walls. For
instance, during the visualization of the dance performance, the user can be asked to
step forward inside the CAVE and then the teacher’s dance motion can be rendered in
the front projection as well as in each of the side projections, so that the student can
look at the front projection for the front view and the side projections for the left- and
right-side views. Then, during the evaluation of the student’s performance, he or she
can be asked to step back for the Kinect to work properly.

In addition to working on these features, we will extend the complexity and scope of
ballet movements and gestures and provide functionality for the online annotation of a
user’s dance movements as he or she works to interactively construct and review new
choreographies.

8. CONCLUSIONS

A novel framework and implementation is presented for the real-time capture, as-
sessment, and visualization of ballet dance movements performed by a student in an
instructional, virtual reality (VR) setting. Using both joint positional features and a
proposed dance feature (based on angles of joints relative to the dancer’s upper and
lower torso), a spherical self-organizing map is trained to quantize over the space of
postures exhibited in typical ballet formations. Projections of posture sequences onto
this space are used to form gesture trajectories, used to template a library of predeter-
mined dance movements to be used as an instructional set. Four different histogram
models are considered in describing a gesture trajectory specific to a given gesture
class (posture occurrence, posture transitions, and sparse codes relating to posture
occurrence and transition, respectively).

Recognition performance was evaluated on a database of isolated gesture recordings
made by both the teacher and student using three different matching techniques (L1
norm, L2 norm, and histogram intersection). Overall, both features were very effective
for recognition, with average recognition rates in the range of 90.5% to 99.5%, with
the dance feature showing improved robustness (discounting some errors introduced
by derelict/noisy recordings in gestures G4 and G5). The incorporation of posture tran-
sitions as a descriptor shows a marked boost in recognition performance (across all
matching metrics used) and can be attributed to its detection of temporal ordering
of postures. The bag-of-segments approach to all four descriptors offers flexibility and
generalization across instances of movement recorded from a candidate user: recogni-
tion for which, due to the natural variation of the human when repeating movements
and the sensor noise introduced by the Kinect, can be a challenging task.

The recognition evaluation was extended to the online case, where a dance composed
of continuous gestures is segmented online using a Bayesian formulation of the rec-
ognizer (using the histogram intersection metric for computing likelihoods over aggre-
gated postural sequences). This formulation shows much promise (in particular when
applied to templates employing descriptors based on posture transition), effectively
delineating a student’s dance movement into constituent gestural units.

A visualization subsystem compares the detected gestural units against a library of
teacher-based gestures and presents immersive visual feedback to the student, thereby
quantifying his or her performance. The feedback offers two visual modes for compar-
ing the student’s performance of movements with the teacher’s and an overall score
component to quantify the training session. The virtual environment affprded by the
CAVE infrastructure enables the student to experience his or her performan J
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evaluate it in the same spatial context in which it was performed. This provides unique
insight and suggestion for how to adjust and improve enacted dance movements during
an interactive training session.
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